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Negative Jacobian free simulations using principal stretches
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Abstract
Finite element (FE) simulations are prone to encountering negative Jacobians during the solving process. If nothing is done,
the simulation can be brought to a halt, result in inverted elements or have undetermined behavior. We propose a solution that
uses principal stretches as slack variables in a constrained minimization formulation and enforce them to always be positive.
We show that our approach can never hit inverted configurations, thus being suitable for applications where inversion cannot
be tolerated. We implement the method in 2D and show that it outperforms standard FE methods in stressful scenarios.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Elasticity FE problems are typically solved using the Newton
method or other nonlinear unconstrained optimizers. But any of
these solvers can overshoot into domains where the elements are
inverted. This is a problem as the behavior of the elastic material is
often undefined in that region. Ideally, we would like inversion to
never happen during the solving process. Here, we focus on adding
constraints to the minimization that prevent inverted elements alto-
gether. These can be constraints on the Jacobian of the deformation
gradient J > 0 or on the principal stretches si > 0. Enforcing the
additional constraints (like in strain limiting) can work, but many
solvers do not enforce strict feasibility at every step. This is why
we chose to express these constraints as slack variables together
with additional equality and bounds constraints on them. We also
chose to use principal stretches si over J as slack variables, due to
the ambiguity in the deviatoric-volumetric split of the energy, espe-
cially for coupled materials like compressible Neo-Hookean. For
isotropic materials, one can express the whole energy function in
terms of principal stretches and the only part of the total energy left
is the work of the external and inertia forces.

There is a lot of work in the graphics community on inver-
sion [ITF04, SHST12], but these allow for inversion to take place
and then recover from it. Many authors prefer to use principal
stretches formulations of FE elasticity, among which are mixed
formulations. In fact, our method can be shown to be a full stress
three field mixed formulation [BW97]. Moreover, at a closer in-
spection projective dynamics can be viewed in the same way. The
work of [NOB16] implements a prox operator in terms of princi-
pal stretches that is very similar to our approach. However, to the
best of our knowledge, our formulation is the first one that uses the
principal stretches as explicit variables and focuses on the inversion
problem.

2. Problem formulation

Most static FE elasticity problems can be expressed after discretiza-
tion as the unconstrained problem of minimizing the objective
U(x) +E(x), where U is the elastic potential and W is the work
of the external forces (body loads and Neuman boundary condi-
tions). The gradient of the objective and the optimality conditions
are given by∇U(x)+∇E(x)=−fint(x)−fext(x)= 0. The external
forces are often constant (e.g. gravity or constant loads), in which
case E = −xT fext and has a zero Hessian. We will be focusing on
linear triangle elements in this paper and gloss over many contin-
uum mechanics and FE details, which can be found in [BW97]. The
deformation gradient F of a triangle (x1,x2,x3) is a function of the
nodal positions x through the relation F = Ds(x)D−1

m , where the
D shape matrices have the form [x2− x1 x3− x1] evaluated at the
current (spatial) and initial (material) configurations. The principal
stretches s̄i are defined as the singular values of F. These values are
computed for each element by performing a singular value decom-
position (SVD): F(x) = UΣVT , where Σ = diag(s̄i) and U and V
are orthogonal matrices.

We now formulate a constrained minimization problem that uses
the additional slack variables s:

min.x,s E(x)+U(s) s.t. s̄e
i (x)− se

i = 0, se
i ≥ 0. (1)

We use a special version of the SVD that contains only pure rota-
tions (no reflections). This means that they are first allowed to take
negative values that would indicate an eventual inversion and then
enforced to always be positive by the additional constraint. In order
to obtain such signed values we need to slightly modify the SVD
so that it always outputs rotation matrices. Such a procedure is de-
scribed by [ITF04] and others, who negate the necessary columns
in U and V and the smallest singular value if needed.
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3. Numerical implementation

The problem in (1) can be solved with any solver that can han-
dle nonlinear equality constraints and simple bounds constraints.
However, we would like to devise an algorithm that is custom built.
This is why we chose the alternating direction method of multi-
pliers (ADMM) [NOB16], given the separable nature of the prob-
lem. Another solver we devised is based on solving the nonlinear
equations resulting from the Karush-Kuhn-Tucker (KKT) optimal-
ity conditions. Most nonlinear equation solvers rely on some form
of the Newton method and this is why we call it a Newton solver.

Most optimization algorithms require the gradient of the objec-
tive and that of the constraints. The gradient of the objective is
made of ∇E = −fext and ∂U/∂s which can be computed from
the isotropic energy density expressed in principal stretches. The
Lagrangian of the problem in (1) is L(x,s,η) = E(x) +U(s) +
η

T
Φ(x,s), where η are Lagrange multipliers related to the second

Piola-Kirchoff tensor. The resulting KKT optimality equations are

∂E
∂x −

∂s̄
∂x

T
η = 0, ∂U

∂s +η = 0, Φ(x,s) = 0. (2)

Some solvers require the Hessian w.r.t. x and s of the La-
grangian diag

(
− ∂

2 s̄
∂x2 η, ∂

2U
∂s2

)
. We give without proving the formula

∂s̄i/∂x j = rT
j viui, where rT

j are the rows of D−1
m for j = 1,2,

r1 = −r2 − r3, and ui and vi are the columns of U and V. One
thing to note here is that the SVD is not unique when the singular
values are equal. On the other hand, the singular values are contin-
uous at such points and their derivatives are unique. This is why we
are not using finite difference approximations. A different story ap-
plies to the Hessian of s̄ as it includes gradients of U and V which
are not unique or continuous. Although semi-analytical recipes ex-
ist [SHST12], we chose to compute the Hessian of the Lagrangian
w.r.t. x using finite differences.

ADMM separates the problem into a sequence of two sub-
minimizations: one for x and one for s. The former is an uncon-
strained one, while the latter has very simple bounds constraints.
The scaled version of ADMM at the kth iteration has the form:

sk+1 = argmin
s≥0

U(s)+ ρ

2‖Φ(xk,s)+uk‖2
2, (3a)

xk+1 = argmin
x

E(x)+ ρ

2‖Φ(x,sk+1)+uk‖2
2, (3b)

uk+1 = uk +Φ(xk+1,sk+1), (3c)

where ρ is a penalty factor and u = η/ρ are the scaled La-
grange multipliers. The gradient of the x minimization objective is
∇Ē =−fext +ρ∇s̄(Φ+u). For the minimization in s we can use a
projected gradient sub-minimizer: sn+1 = max(0,sn−α∇sŪ(sn)),
where n indicates the iteration number, ∇sŪ(sn) = ∇sU(sn) +
ρ(Φ(x,sn)+u) and α is the step length. As you can see we have
at least two iterative methods nested into one another and lots
of parameters for them: ρ, α and the maximum number of iter-
ations. You are guaranteed at every step that no inverted config-
urations will be reached given si are always positive. In our ex-
periments we have found ρ = 109, α = 10−10 to work well. In
addition, we used convergence criteria to early terminate the it-
eration. For gradient descent we used as a measure the relative
change of the norm of the gradient. We used a relative tolerance
for ADMM too, but this time we applied it to the `1 merit func-

tion φ1(x) = E(x)+U(s)+ρ(maxi|ui|)‖Φ(x,s)‖1. For our exper-
iments, we used a relative threshold of 10−7 for the merit function
in conjunction with a 10−4 absolute threshold for ‖Φ‖2.

The Newton solver is essentially one that solves the nonlinear
equations in (2) without considering the bounds constraints while
using Hessian information. In practice, we found that the system in
(2) without the bounds constraints is enough to solve the problem
without running into inverted configurations. As for the inequal-
ity bounds constraints, we resorted to the remapping s = exp(σ)
and used σ as a variable instead of s. This prompted the recal-
culation of the gradients and Hessian w.r.t. σ: ∂U

∂σ
= S ∂U

∂s ,
∂

2U
∂σ2 =

diag
(
S ∂U

∂s

)
+S ∂

2U
∂s2 S, where S = diag(s). By replacing these into

(2) and the Hessian we are able to solve the modified nonlin-
ear equations that also satisfy the inequality constraint in (1). Us-
ing the above substitution and the gradient expression, we can
also derive an exponential map form of gradient descent: sn+1 =
sn exp[−αsn∇sŪ(sn)], that can be used instead of the projected gra-
dient descent in the ADMM solver.

4. Results and conclusions

We have implemented these solvers in Matlab. One of the main ex-
periments we made was to compress a bar as we found it to be a
hard problem to solve. The standard method is always in danger
of inverting and starts giving unrealistic solutions under stress, the
only surviving solvers being our ADMM and Newton solvers, as
depicted in Figure 1 of the accompanying material. In Figure 2 we
fixed the bar by both ends and applied a vertical load on top. The
triangles become very thin, but a solution is still possible without
encountering inversion. In conclusion, we introduced a constrained
minimization framework using principal stretches that avoid ele-
ment inversion. We devised two solvers and extended them with
an exponential map that guarantees positive principal stretches. We
are currently working on a C++ version that does not rely on any
external library, as well as an extension to 3D.
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